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Goals of the study: 

Although very limited information is available about the outbreaks of Fall Armyworm 

(Spodoptera frugiperda; FAW), which is fast becoming ineradicable across continents, the 

only way then to mitigate the monumental losses left in the wake of its infestation is to 

understand the pest in great details and develop multi-pronged crop protection and pest 

control strategies. This study attempts to shed light on the conditions favouring the spread of 

FAWs by combining three different datasets bringing complementary information on 

potential outbreaks of FAW. 

 

Due to the limitations of the data collection method used by FAO, the combined dataset does 

not allow to build a forecasting model. This study, therefore, focuses on extracting features 

which are driving the spread of FAW in Africa, where most of the data has been collected. 

Although based on the Africa dataset, we have conducted the analysis in such a way that the 

findings can be extended to any FAW incidences globally. 

 

Fall Armyworms: a global threat: 

The larval stage of FAW moth is a pest that feeds on more than 350 plant species, causing 

extensive damage to economically important cultivated cereals such as maize, rice, sorghum; 

ash crops like cotton, sugarcane, peanuts; fruit crops like apples and oranges, and vegetable 

crops, among others. Maize however remains the preferred host. Because the caterpillar eats 

so much of the plant, they are very detrimental to crop survival and yield. Accord ing to the 

FAO, as much as 18 million tonnes of maize are lost annually in Africa, enough to feed tens 

of millions of people for whom it is a staple crop and representing an economic loss of up to 
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$4.6 billion in the continent. In addition, country specific studies have shown a positive 

correlation between FAW exposure and intensity of insecticide use. Several measures to 

control FAW infestation exist and yet do not significantly reduce the losses.     

 

In India, FAW was first reported in the fields of Chikkaballapur district in Karnataka 

according to a survey conducted by the National Bureau of Agriculture Insect Resources 

(NBAIR) in July 2018. The pest has destroyed more than 70 percent of the crop in Karnataka 

and has now spread further into southern, western, northern and north-eastern India. Maize is 

grown in about 9.3 million hectares with a total annual production close to 28 million tons.  

 

Datasets: 

We have combined three complementary, publicly available datasets for this study.  

  

1. The core data set used in this study is the data being collected under the program launched 

by the Food and Agriculture Organization (FAO) of the United Nations, for Global Action 

for Fall Armyworm Control, which catalogues cases of FAW outbreaks, mostly in African 

countries. The FAW Monitoring and Early Warning System (FAMEWS) consists of a 

mobile app distributed to farmers for data collection and a global platform for mapping the 

current situation. The data is mostly collected by farmers themselves directly in the 

FAMEWS app, using two techniques of detection: collecting insects using pheromone traps 

or scouting the field. The version of the datasets used for this study cover cases registered 

between 27-02-2018 and 30-09-2019. The selected dataset consists of 39013 cases and for 

each case 44 variables have been measured. Unfortunately, this dataset from FAO is no 

longer freely available on their website anymore.  

  

2. In combination to the FAW outbreak dataset, we used reanalysed Weather Data from the 

VIC model in the Famine Early Warning Systems Network (FEWS NET) Land Data 

Assimilation System (FLDAS). The data are in 0.25-degree resolution covering the entire 

African continent from January 2001 to present (in case of this study we used data available 

between February 2018 and October 2019). The temporal resolution is daily. A total of 21 
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variables are extracted from the model, comprising precipitation amount, temperature and 

wind speed. 

  

3. The last dataset used is the Soil Data from Harmonized World Soil Database (HWSD). It is 

a 30 arc-second raster database with over 15000 different soil mapping units that combines 

existing regional and national updates of soil information worldwide (SOTER, ESD, Soil 

Map of China, WISE). The datasets comprise 58 variables, describing the composition in 

terms of soil units and the characterization of soil parameters (organic Carbon, pH, water 

storage capacity, soil depth, cation exchange capacity of the soil and the clay fraction, total 

exchangeable nutrients, lime and gypsum contents, sodium exchange percentage, salinity, 

textural class and granulometry).  

 

The three datasets were merged based on the geo-coordinates of the crop fields provided in 

the FAMEWS data. 

 

Method 

A. Selection: 

Two different methods of inspection have been used in the FAMEWS dataset: Scouting and 

Pheromone traps. The different inspection methods, as standalone and in combination, may 

generate unforeseen biases. We have, therefore, limited the study to the sample detected 

using Scouting, as it represents the largest sample (69% of the cases, i.e., 26901).  

 

As shown in Figure 6, when looking at the relative distribution of positive and negative 

detections of FAW in the Scouting sample from FAMEWS, positive cases are dominating the 

sample at 85.9%. The very strong bias for positive detections in the dataset actually suggests 

that the data collection through the mobile app has been started after the actual FAW 

outbreaks. If the data collection was made from a systematic survey in a given area (with 

inputs from all farmers in that area during the survey period, irrespective of the incidence of 

FAW), we would expect to see a far lesser fraction of detections in the dataset.  
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As demonstrated, the Scouting- inspection-based dataset is highly biased toward positive 

detections. This is most likely due to the reactive nature of data collection following 

outbreaks (farmers only use the app once their field has been infested). Such an unbalanced 

dataset doesn‟t allow us to build a prediction model of FAW outbreak for a given field a t a 

given date. To achieve such a goal, a more systematic and unbiased data collection is 

necessary, to provide a realistic representation of outbreak cases.  

 

We, therefore, decided to focus our research on the drivers and aggravating factors of the 

spread of FAW in maize crops. In practice, we are using machine- learning modelling to 

extract a set of features with predictive power to identify the presence of FAW. We want to 

make sure the predictive importance of these features can be extrapolated through location 

and time, so that the insights we get from Africa‟s outbreaks in the past are valid for other 

countries (e.g., India) in the future.  

 

B. Model, Pre-processing & Validation strategy: 

We decided to train an Extreme Gradient Boosting optimized to predict, as a target variable, 

the percentage of plants infested by FAW at a given inspection point. As described in the 

previous section, prediction of the spread of the pest (i.e., if a field is going to be affected or 

not?) is not possible due to the bias in the detection sample. Therefore, we chose to focus on 

the prediction of the level of infestation (i.e., knowing that the field is infested, what is the 

expected fraction to be affected?) 

Before any model training, we proceed for a proper pre-processing of the dataset: 

 

 Limiting the dataset to the African continent and maize crops (as information on other 

crops are also present in the dataset) - reducing the total sample to 16705 cases; 

 Removal of duplicate rows and constant columns; 

 Domain-driven selection of features from the FLDAS, FAMEWS and HWDS datasets 

(focusing only on relevant information, dropping irrelevant or duplicated features, 

e.g., database IDs); 

 Standardization of certain fields (e.g., „cornfields‟ as different measurement units are 

used depending on the user of the app); 
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 Manual feature engineering, combining features in a more relevant fashion for our 

study; 

 Aggregation of weather data to reflect weekly averages.  

 

Given the nature of the FAMEWS dataset, and the mixture of spatial and tempora l features 

used (soil and weather data), we have to implement a particular validation strategy, to ensure 

that the most important features will generalize properly through time and location. Our 

validation strategy is based on a temporal separation, where data from 2018 is used in 

training and data from 2019 in validation. However, to decouple any spatial effect, we 

improve this basic strategy as follows: 

 

 For the validation sets from 2019, we define 3 specific areas as intervals of 

longitudes: A (-16°, -1°), B (26°, 33°) and C (35.5°, 46°). These areas have been 

carefully designed to maximize the amount of both training and validation 

instances. 

 We then split our dataset of inspections in training/validation three times, each time 

training the model on the 2018 dataset excluding data in the validation area (e.g., all 

2018 data outside of area A), and validating with the 2019 data set within the 

validation area (e.g., all 2019 data within A).  

 With such a validation strategy, we optimize the most important hyper-parameters 

starting with a global grid search, followed by a more local grid search to fine-tune. 

With the three splits described above, while fine-tuning the hyper-parameters of the 

model, we can calculate the Mean Absolute Error (MAE) of the model between the 

validation sets. The lower the MAE, the higher is the ability of the model to 

generalize through location and time.  

 

C. Feature selection: 

Once the model is trained, we can calculate, for each feature, the gain in the XGBoost 

objective function obtained when one of the decision trees of the model makes a split in the 

dataset using that feature. We then define the importance of a feature within a XGBoost 

model as the sum of all these gains.  
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However, feature importance can be artificially boosted by hidden correlations, or masking 

information about location or time. To ensure that the selected features generalize properly, 

for each feature, we again fine-tune and train a model leaving the feature out. We then 

compare the MAE of this new model excluding the feature, with the previous model 

including it. If the MAE increases considerably (more than 0.005) when leaving the feature 

out, we discard the feature. In this case, the set of important features is re-calculated again, 

leaving the discarded feature out of our predictors set.  

  

Analysis & Results: 

To visualize the power of the selected features to discriminate between highly and slightly 

infested crops, we build a decision tree using a binary target which is defined to be True if the 

crop has a percentage of plants with FAW over the median (which is around 25% of 

infestation), and False otherwise, as represented in Figure 10.  

  

The decision tree reads from top to bottom and as follows: 

 Each cell represents a split into two parts of the sample based on the stated condition 

(for instance on the top cell „Psurf_f_tavg_mean<96627.656‟); if condition is 

satisfied (True) then the corresponding splitted sample is checked against the next 

level cell on the left, if not satisfied (False) on the right; 

 In each cell the fractions of negative (in our case less infested) and positive (in our 

case more infested) are indicated in brackets (for instance on the top cell „value= 

[0.513,0.487]‟ hence 51.3% of negatives and 48.7% of positives);  

 The proportion of the full sample represented by each cell is as well indicated (for 

instance in the top cell „samples=100%‟); 

 The higher the fraction of positives (more infested) the bluer is the cell, the higher the 

negatives (less infested) the redder.  

 

Impact of soil density: 

Here we need to highlight that some of these features have a real predictive power only when 

combined with others. For example, as seen in Figure 11, the fraction of Clay „T_CLAY‟  
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independently has a rather weak correlation with our target. However, the second plot in 

Figure 11 shows that when combined with the surface pressure „Psurf_f_tavg_mean‟ it has a 

stronger impact. This fact can already be deduced by the decision tree.  

A tentative interpretation is that at higher Surface atmospheric pressure the so il is denser 

disregarding its composition. At lower atmospheric pressure, the soil being less dense, then 

the texture of Clay will impact more the density. With a less dense soil (so at low 

atmospheric pressure and lower fraction of Clay content), the FAW adult moth can more 

easily emerge from the soil once the pupae have enclosed, increasing the risk of infestation.A 

similar interpretation can be put forward with the fraction of Organic Content as seen in 

Figure 12: the higher the Organic Content fraction the less dense the soil will be, therefore 

the higher the risk of infestation. 

Note that in the figures 11 and 12, we used a third order regression. The low statistics in 

measurements in the extreme cases of Clay or Organic Content weight fraction, prevent any 

interpretations as such measurements and may not be reliable enough.  

 

Impact of the stage of crop growth and crop health:  

The FAW caterpillars feed mostly on the tender part of the maize leaves and whorls, which 

explains a stronger risk of infestations on young crops and a rapid decrease of the risk with 

older crops seen in Figure 13. The peak of infestation is around 30-80 days. Maize matures in 

130-135 days after planting, which explains the rapid decrease in statistics (and infestation 

cases) beyond this age, as such cases are probably mostly related to mistakes in data 

collection (as the age is computed from data collected by the farmers directly).  

 

In Figure 14, we investigated the impact of Soil temperature on infestation rate (air 

temperature and the soil radiative temperature correlate very strongly with soil temperature so 

we focused only on this variable).  

Impact of weather conditions: 

When displaying the effect of wind on infestation, as shown in Figure 15, an increase of 

infestation is noticeable at first with stronger winds (up to 2m/s), but when wind is getting 

stronger the infestations are reducing (up to 4m/s). A potential interpretation would be that 

some wind improves the chances of the FAW moth to spread and resume the cycle in a 
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different area of the crop field, but stronger winds prevent FAW caterpillars to remain on the 

leaves to continue feeding. 

  

Figure 16 shows a negative correlation between the infestation and both Air Specific 

Humidity and Rainfall. These results indicate that despite humidity and rainfall being 

beneficial for the development of the plant, excessive rain washes out FAW caterpillars from 

the leaves, in fact reducing the infestation rate. This is a controversial result as some studies 

in the literature tend to indicate the opposite.  

 

Impact of irrigation: 

As seen in Figure 16, Rainfall seems to be slowing down infestation. We further investigate 

the impact of watering to see if indeed rainfall is harmful for FAW. 

In Figure 17-Left, Soil moisture displays similar negative correlation with infestation rate as 

Air humidity and Rainfall. However, when looking at the effect of different types of 

watering, in Figure 17-Central, it is clear that while irrigation seems to favour infestation, 

Rainfed watering is definitely reducing the infestation rate, confirming the result mentioned 

above. As shown in Figure 17-Right, Soil moisture is on average higher with Rainfed than 

with Irrigation, which means that rain is favouring the development of the plants as well (in 

fact soil moisture also depends of soil composition, information provided by the Available 

Water Capacity „AWC_CLASS‟ in our dataset.)  

One clear observation which can be made regarding irrigation from this analysis is that any 

irrigation system (like sprinkler) mimicking rain would reproduce the effects noticed with 

Rainfed (reducing infestation rate).  

It is also interesting to note that there is no evidence from our analysis that lack of soil 

moisture (water stress) aggravates the infestation by FAW, as reported from South Sudan in 

the FAO report referenced above. More data and deeper investigations would be required to 

understand such a discrepancy. 

 

Conclusions and Recommendations: 

The work conducted, besides providing some actionable insights (for instance, with 

irrigation), demonstrates the significance of taking a data science-based approach to use 
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various sources of information, beyond the scope of restricted surveys, to support the 

development of comprehensive and result oriented agricultural projects. 

  

1. We highlight the importance of a holistic approach by combining distinct but highly 

complementary datasets (input from farmers “FAMEWS”, weather “FLDAS” and soil data 

“HWSD”), in deriving a consistent and robust picture. As seen in the study, all important 

features are extracted from the three datasets, and most insights are provided based on a 

combination of features from the various data sources (as can be seen from the Decision 

Tree). 

  

2. This entire work is based on the availability of Open Access Data. We would like to 

acknowledge the work of the teams who built these datasets (data collection, data analysis, 

modulization and simulations). We want to re-emphasize the importance of sharing such data 

freely, and are saddened by the recent removal of access to the FAMEWS dataset by FAO 

from their website (as per the latest status, which up to end 2019 was still possible to 

download in csv/excel format).  

  

3. We have identified a defined set of important features (14 features), which can be used to 

better understand the drivers behind the spread of FAW. Although we recommend 

aggregating as much data as possible, these features can be used as guidelines for future data 

collection strategies. Most of the results of the analysis conducted here are of course backed 

by previous studies and common knowledge, but this analysis provides quantifiable 

information which can be used for building predictive models and identifying actionable 

measures to limit the spread of the pest.  

  

4. Data acquisition is a critical element of any research, and the excellent work done by 

FAMEWS deserve to be emphasized here. Providing farmers access to an app to inform them 

of the status of their field is a major weapon against the spread of pests such as FAW. 

However, the dataset presents its own limitations due to “informal” key- in by farmers, 

leading to certain lack of accuracy and generating uncontrollable biases. The collection 

strategy taken by FAMEWS implied an important bias for post outbreak measurements, as 
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farmers used the app mostly after an incidence of infestation, which prevents the possibility 

to build a predictive model of the FAW spread.  

  

We would recommend adopting a systematic survey strategy by collecting information 

directly at the farm level, independently of pest infestations over several seasons, and 

combining the inputs from farmers with independent weather and soil information. The 

design of the survey needs to have predictive and prescriptive modelling as an aim based on 

which measures can be adopted to fight biases as much as possible. Such projects require the 

involvement of Data Scientists and Machine-Learning experts right from conception.  
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