
Vol.1 Issue-10, JUNE 2021 (e-ISSN: 2582-8223)

1

 Comparative genomics is an arena of biological research in which the genomic features

of different organisms are compared by using different techniques. Pairwise genome

comparisons are made by matching two significant unit pair of whole genome sequences. The

comparison of outdated pairwise sequence algorithms are used to process much larger

datasets than they were eventually designed for the process of genome comparison. With the

limitation of the computational resources, the performance of the traditional algorithms

decreases with the increase in sequence size that leads to starvation of computational

memory. These cause constrictions in processing in inadequate capabilities of software and

thus restrict full use of available resources of hardware. To overcome this obstacle that limits

the efficiency of computational analysis of large scale sequence datasets of biological origin

by constituting existing algorithms or by constructing novel application that solves a major

huddles for the Bioinformatics.

A brief discussion of steps involve in genome comparison:

 To get rid of the limitations of traditional sequence comparison methods, first an

application specific reduction of main memory and also computational space usage, and

secondly modularizing the process by using standard software engineering concepts which is

the main concern of modern Bioinformatics Community. Reduction in the memory usage by

adopting an out-of-core strategy that designed to manage data structures that are too large to

fit into core memory at one time. Therefore, there is need of virtual memory concept to deal

with the flood of data. For large scale sequence analysis, poorer data locality can result in

degradation of performance in memory concentrated applications. A modular application

design is used to identify collections of HSPs (High Scoring Segment Pairs) by pairwise

genome comparison techniques that can be used to obtain gapped fragments called k-mers.

The strategies applied to the architecture of genome comparison are:

(a) Dictionary calculation

A modern approach to pairwise genome comparison

using synteny mapping
Nalinikanta Choudhury

*
, Bulbul Ahmed

*

*Deptt. Of Bioinformatics
IARI, Library Avenue, PUSA, New Delhi-110012

ARTICLE ID: 55

Vol.1 Issue-10, JUNE 2021 (e-ISSN: 2582-8223)

2

(b) Hits determination

(c) HSP detection

(d) HSP post-processing

1. Dictionary Calculation:

 The calculation of dictionary is based on the binary tree technique. Each tree node

contains a word called as key and its list of occurrences called as values. In a binary tree, left

hand side nodes of a particular tree come in a lexicographical order before nodes on the right

hand side. Memory consumption problems are avoided that caused by the huge number of

possible words i.e. a maximum theoretical of 4K different words, without repetitions. So

splitting the calculation in to P steps (with P being a multiple of 4), thus reducing the amount

of memory used by the program by a factor of P. The dictionary is splitted up and arranged in

a lexicographical order, a prefix of length log4 P is used. The strategy requires iterating p

times over the whole sequence, using a different lexicographically-organized prefix each time

to preserve word order. Memory allocation is avoided by requesting for each node, a single

memory pool is reserved at the beginning of the process and new memory pools are then only

reserved once the currently reserved memory is used up. The result is obtained by traverse the

tree in a proper order, storing the word pertained in the node together with the list of their

occurrences. Thus the memory consumption issues are reduced by Software Engineering

approaches.

2. Hits determination:

 The second section of the workflow starts with the identification of the starting points

or seeds points for the local alignment. If a word say “wi” appears n times in the first sequence

at positions Pj (j = 1,2,...,n); and particularly, the same word “wi” appears m times in the

second sequence at positions Pk (k = 1,2...,m), then a hit will occur in all (Pj, Pk) coordinates

producing the following set of hits i.e. h = {(1, 1), ...(1,m), (2, 1), ...(2,m),…,(n, 1), ...(n, m)}.

These hits are all then considered as starting points for possible local alignments. The number

of resulting hits could be very high which depend on how similar the sequences are and also

on the K value (Word size) used. It is highly recommended to disguise low complexity

regions in order to reduce the hits produced by repetitive sequences. Further reduce in the

number of hits, a proximity approach is

Vol.1 Issue-10, JUNE 2021 (e-ISSN: 2582-8223)

www.justagriculture.in

P
ag

e3

applied and by the use of proximity approach, those hits which appear on the same

diagonal, defined as d = (Pj − Pk), and at a predefined distance are combined. This can be

achieved very quickly and easily by sorting the hits by diagonal and offset, these are

performed using the help of a threaded version of the quick sort algorithm and then joining

all the hits that are present within the distance parameter value. This produces a set of

ungapped HSPs that conform to a local alignment.

3. HSP detection:

 After formation of a set of ungapped HSPs, the score is calculated either by adding

or subtracting a given weight value on the basis of DNA identity, depending on if a match or

mismatch is found, respectively. The fragment usually starts from a hit with a positive score

and is stretched along the sequence, modifying the overall HSP score until and unless, it

becomes negative or the end of one of the sequences is reached. Fragment boundaries are

the positions that give the highest added score at both ends as HSPs are extended in both

directions along the sequence i.e. in both forward and backward direction. Thus the

algorithm continues searching for HSPs within the next hit in diagonal or the first one of

the next diagonal. If the subsequent hit in the same diagonal has been concealed by

addition of the previous HSP, thus it would not be used since it will result in a redundant

sub-HSP within the previous one. It results a set of recognized HSPs that are defined as

starting and ending coordinates in both the sequences, together with HSP length, score and

the identity levels.

4. HSP Post –processing:

 All the existing methods provide a graphical way of representation of local

alignments after computation. The process can also incorporates a visualization technique

that can generates a PNG file so as to show the ability to output its analyses in formats that

can be processed by the visualization techniques included with an existing analysis

programs. In addition to that, it also includes post-processing applications that enable the

tasks such as application of additional filters to HSP collections or to generate gapped

alignment constructions based on ungapped ones.

The basic problems of sequence comparison are –

I. Reduction of main memory and computational space usage

II. Modularizing the process using classical software engineering concepts

