

Role of RNAi in Crop Improvement

Amaresh*1 and Aswini Nunavath2

¹Ph.D Scholar, Division of Genetics, Indian Agricultural Research Institute, New Delhi ²Ph.D Scholar, Department of Genetics and Plant Breeding, Professor Jayashankar Telangana State Agricultural University, Hyderabad

ARTICLE ID: 081

Introduction

The RNA interference (RNAi) is involved in target-specific gene regulation driven by the introduction of dsRNA resulting in transcriptional repression or inhibition of translation. The discovery of RNAi and its regulatory potentials, it has become obvious that RNAi has huge potential in opening a new outlook for crop improvement. RNAi technology is accurate, stable, efficient and better than antisense technology. It has been employed successfully to alter the gene expression in plants for better biotic and abiotic stresses and the nutritional improvement in terms of bio-fortification and bio-elimination. Thus, there is huge potential of RNAi to improve the agriculture crop productivity.

Andrew Fire and Craig Mellow (1998) proved that dsRNA is responsible for endogenous silencing of mRNA. Play important role in eukaryotic gene regulation at both the transcriptional(by triggering epigenetic modifications, including DNA methylation and histone modifications) and post-transcriptional (controlling mRNA stability or preventing translation) levels. Different types of small RNA involved in plant response with typical biogenesis mechanism play significant role in gene regulation of crop plants (Table 1).

miRNA

Produced from long primary transcripts of miRNAs (pri-miRNAs) containing at least one hairpin-like miRNA precursor processed by RNase III (in nucleus) & generate precursor miRNA (pre-miRNA.This pre-miRNA transferred to cytoplasm, forms a stem & loop structures and cleaved by RNase III (i.e.Dicer) to generate mature miRNAs (~22 nt). The miRNAs with Argonaute protein & RNA-induce silencing.

siRNA

The dsRNA (~21 nt), either artificially synthesized or transferred from nucleus to cytoplasm, processed by DCR-1 to form ds-siRNA. The ds-siRNAs are connected to siRISC

by RISC. Unfolded by a helicase to activate the siRISC. Activated siRISC is associated with the target mRNA. Degradation of complementary target mRNA (translation inhibition) will occur.

Table 1. Types of sRNAs involved in plant response

S. no	Class	Full form	Length (nt)	Originating loci	Biogenesis	Function
1	miRNA	microRNA	20–22	MIR genes	The hairpin structures of ssRNA transcripts are cleaved by DCL1 and HYL1	Silences expression of target genes by mRNA degradation and translational repression
2	siRNA	Short interfering RNA	24–30	Repeats, transposons, and retroelements (endogenous). Transgenes and viral RNAs (exogenous)	RDR-generated dsRNAs are cleaved by DCL-4 and HYL1	Silences gene expression by RNA-dependent DNA methylation and chromatin modification
3	ta-siRNA	Trans-acting-Short interfering RNA	21	TAS loci	miRNAs mediated cleavage of TAS genes, transcribed by RDR into dsRNA, and then processed by Dicers	Silences target gene expression through mRNA cleavage
4	nat-siRNA	Natural antisense transcript derived siRNA	20–22; 23–26	Loci generating pairs of sense- antisense transcripts	dsRNA derived from overlapping transcripts are cleaved by DCL1 and binds to AGO1	nat-siRNA silences target gene expression through mRNA cleavage

Difference between siRNA and miRNA

Properties		siRNA	miRNA		
Origin		Encoded by transposons,	Encoded by their own		
		viruses, heterochromatin	genes (MIR genes).		
	_		Transcribed by RNA Pol. II		
Biogenesis	\	Long bimolecular RNA	Single RNA molecules-		
	,	duplexes or extended	include an imperfect stem-		
		hairpins	loop secondary structure		
Evolutionary conserva	tion	Rarely conserved in related	Nearly always conserved in		
		organisms	related organisms		
Natureof Regul	atory	Mediate the silencing of	Regulate different genes		
targets		the same (or similar) genes			
		from which they originate			
Role		Plant immune mechanism	Regulation of a wide range		

(e-ISSN: 2582-8223)

as they help to prevent the			of physiolo	gical responses
spreading	of	foreign	and	developmental
nucleic acid			processes	

Components of gene silencing

DCL: It is RNAase III enzyme, It cleaves long dsRNA into 21-25 nt fragments. Eg. DCL1, DCL2, DCL 3, DCL 4 etc.

AGO: Agronaute protein binds small RNA and their targets. Eg. AGO1, AGO2, AGO3 AGO4, AGO5, AGO7

HEN 1 PROTEIN: It protects miRNA and siRNA from exonuclease activities by methylation of these RNA.

RDRP: RNA dependent RNA Polymerase is involved in amplification of siRNA amount. RDR2 and RDR6 are required for the production of 24nt siRNA.

Role RNAi in crop improvement

RNAi has several applications in crop improvement such as, Defence improvement against insect, virus, nematode, bacteria and fungi, Biofortification for β -Carotene and lycopene, carotenoid and flavonoid, starch, lysine, amylose and vitamin C, Bio-elimination for caffeine, cadmium, and morphine. Altered phenotype for flower colour, scent profile modification, parthenocarpy, enhanced shelf life, plant architecture, and Male sterility and fertility (Table 2 & 3).

Table2.RNAi-mediated improvised defence

S. no.	Defence improvement	Resistance against	Targeted gene	Plant used	References
1	Insect resistance	Helicoverpa armigera	CYPAE14	Cotton	Mao et al. (2007)
		Corn rootworm	V-ATPase A	Maize	Baum et al. (2007)
2	Virus resistance	Rice Dwarf Virus (RDV)	PNS12	Rice	Shimizu et al. (2009)
		Bean golden mosaic virus (BGMV)	AC1 gene	Bean	Bonfim et al. (2007)
		BYDV (Barley Yellow Dwarf Virus)	BYDV-PAV	Barley	Wang et al. (2000)
3	Nematode resistance	Meloidogyne incognita	splicing factor and integrase	Tobacco	Yadav et al. (2006)
		Meloidogyne	16D10	Arabidopsis	Huang et al. (2006)
		Meloidogyne javanica	Tis11	Tobacco	Fairbairn et al. (2007)
4	Bacteria resistance	Xanthomonas citri subsp. citri (Xcc)	PDS and CalS1	Lemon	Enrique et al. (2011)
5	Fungus resistance	Phytophthora infestans	SYR1	Potato	Eschen-Lippold et al. (2012)
		Phytophthora parasitica var. nicotianae	GST	Tobacco	Hernández et al. (2009)
		Blumeria graminis f. sp. tritici	MLO	Wheat	Riechen (2007)

Table 3. The gene targeted for RNAi-mediated crop improvement

S. no.	Crop improvement	Traits improved	Gene targeted	Plant used	References
1	Biofortification	β-Carotene and lycopene	NCED1	Tomato	Sun et al. (2012)
		Carotenoid	ε-CYC	Brassica napus	Yu et al. (2007)
		Carotenoid and flavonoid	DET 1	Tomato	Davuluri et al. (2005)
		Carotenoid with decreased sinapate esters	DET1	Brassica napus	Wei et al. (2009)
		β-Carotene and lutein	BCH	Potato	Eck et al. (2007)
		Starch	AtGWD	Maize	Weise et al. (2012)
			AtGWD and AtSEX4	Arabidopsis	Weise et al. (2012)
		Lysine	ZLKR and SDH	Maize	Houmard et al. (2007)
			Maize zein storage protein	Maize	Segal et al. (2003)
		Amylose	SBE IIa and SBE IIb	Wheat	Regina et al. (2006)
			SBE IIa and SBE IIb	Barley	Regina et al. (2010)
		Stearic- and oleic- fatty acids	Stearoyl-acyl-carrier protein $\Delta 9$ -desaturase and oleoyl-phosphatidylcholine $\omega 6$ -desaturase	Cotton	Liu et al. (2002)
		Vitamin C	APX	Tomato	Zhang et al. (2011)
2	Bio-elimination	Caffeine	CaMXMT 1	Coffea canephora	Ogita et al. (2003)
		Cadmium	PCS	Rice	Li et al. (2007)
		Morphine	Codeine Reductase (COR)	Papaver somniferum (Opium poppy)	Allen et al. (2004)
3	Altered phenotype	Flower colour: blue to white	CHS	Torenia hybrida cv. Sun merwave Blue	n-Fukusaki et al. (2004)
		Scent profile modification	PhBSMT	Petunia	Underwood et al. (2005)
		Parthenocarpy	AUCSIA	Tomato	Molesini et al. (2009)
			CHS	Tomato	Schijlen et al. (2007)
		Male sterility	TA29	Tobacco	Nawaz-ul-Rehman et al. (2007)
			GEN-L	Rice	Moritoh et al. (2005)
			BCPI	Arabidopsis thaliana	Tehseen et al. (2010)
		Fertility restored	orfH522	Tobacco (male sterile)	Nizampatnam and Kumai (2011)

Conclusion

RNAi can be largely effective for functional genomics and biotechnology of annual as well as perennial plants. To meet the worldwide demand for food, fibre and fuel the production of improved crops are looked-for, which will be provided with the advances in RNAi technology. There are numerous opportunities for the applications of RNAi for its improvement such as stress-tolerance, enhanced nutritional level and higher yield. Thus, there is vast potential of RNAi to improve the agricultural crop yield significantly.

References

Datta, S., Mushtaq, M., & Bhat, J. A. Micro RNA and Other Small RNA's as a Potent Tool for Crop Improvement.

(e-ISSN: 2582-8223)

Kamthan, A., Chaudhuri, A., Kamthan, M., & Datta, A. (2015). Small RNAs in plants: recent development and application for crop improvement. *Frontiers in plant science*, 6, 208.

Saurabh, S., Vidyarthi, A. S., & Prasad, D. (2014). RNA interference: concept to reality in crop improvement. *Planta*, 239(3), 543-564.

