

Bio-herbicides: An Eco-friendly Approach for Weed Management

R. P. Singh, Abhik Patra, Ratul Moni Ram, Ashutosh Kumar and B.K. Singh

Krishi Vigyan Kendra, West Champaran-II, Dr RPCAU, Pusa, Samatipur, Bihar

ARTICLE ID: 09

Introduction

Weed plant species have a considerable negative impact on agricultural crop output, and managing them is a serious challenge for the agricultural sector. These plants can quickly absorb scarce natural resources including water, light, soil nutrients, and space. They can multiply quicker than cultivated plants due to characteristics such as a deep root system, drought and frost resilience, and high nutrient utilization efficiency. Furthermore, weeds can leak allelopathic compounds into the soil, which promotes the growth of pests and crop pathogens. These features make them competitive with arable crops, typically resulting in a decrease in agricultural output while increasing cultivation costs. Unfortunately, the excessive and frequently improper use of chemical herbicides has resulted in a variety of negative side effects, including plant resistance, soil and groundwater contamination, and harm to non-target organisms. There is a need requirement for suitable alternatives of chemical herbicides. Bioherbicides are an eco-friendly alternative to chemical herbicides, reducing environmental impact and health risk.

Bio-herbicides are substances that suppress weed populations by the use of bio-organisms like as fungi, bacteria, viruses and plant-based products including plant extract and essential oils and natural metabolites. Bio-herbicides are a new strategy for addressing the inadequacies of traditional conventional herbicides. The bio-herbicide inhibit of physiological activities like nutrient uptake, photosynthesis etc and disrupt cellular functions like cell wall and cell membrane, hormone and toxic production etc. Microbes can overcome weed plant resistance and infect the target plant due to their virulence factors. There are two major groups of virulence factors. The first category contains enzymes that break down cell walls, lipid membranes, and weed proteins. Amylases, pectinases, cellulases, enzymes that change lignin, proteases, peptidases, and phospholipases are all members of this class. The second group of

virulence factors consists of peptides and secondary metabolites with phytotoxic characteristics that disrupt weed physiological and metabolic systems. Different types of formulation have been developed to enhance the shelf life of different bio-herbicides for successful commercialization.

Fungal pathogens as bio-herbicides (Mycoherbicides)

Many fungi have been shown to exhibit broad spectrum weed control ranges. Fungal pathogens are the most promising alternative of synthetic chemical herbicides for weed management systems. Fungal pathogens weed control is based on their phytotoxic metabolites. These metabolites inhibit the plant pathways and toxic to weed plant cells. *Alternaria, Phytophthora, Colletotrichum, Fusarium, Pseudocercospora, Cochliobolus, Ascochyta, Drechslera, Phoma, Phyllostictica, Pyrenophora, Septoria, Stagonospora, Amphobotrys, Myrothecium* are the most common fungal pathogens for the bio-control of weeds. Fungi also suppress weed growth and development by creating specific types of secondary metabolites. Fungal phytotoxins attack plants, disrupt the proper functioning of their systems, and ultimately kill their hosts. Soil-borne fungi are potentially important bio-herbicide candidates because they may be applied directly to soils to reduce weed populations through the decay of seeds before emergence or kill seedlings shortly after emergence. Some important commercially available mycoherbicides are listed in table-1.

Bio-control agent/Fungal	Target weeds	Formulation/Carrier	Ecosystem
Pathogens			
Colletotrichum	Northern joint vetch	Collego, LockDown	Rice,
gloesporiodes f. sp.	(Aeschynomene		soybean
aeschynomene	virginica)		
Colletotrichum	Roundleaf mallow	Biomal, Mallet	Flax, lentils,
gloesporiodes f. sp. malvae	(Malva pusilla)		horticultural
			crops
Colletotrichum	Dodders (Cuscuta	Product in use in	Soybean
gloesporiodes f. sp.	spp.)	China "Lubao 1-S22"	
cuscutae			
Colletotrichum acutatum f.	Hakea (Hakea	Hakatak- available -	Mountain
sp. hakeae	sericea)	South African market	meadows

Table 1: Commercia	l use of m	ycoherbicides.	, target w	eed and	d ecosystems
--------------------	------------	----------------	------------	---------	--------------

Vol. 5 Issue- 5, January 2025

Colletotrichum truncatum	Hemp sesbania	Coltru	Soybean,
	(Sesbania exaltata)		cotton, rice
Colletotrichum coccodes	Velvetleaf (Abutilon	Velgo	Maize,
	theophrasti)		soybean
Phytophthora palmivora	Strangler or	DeVine	Citrus
	milkweed vine		groves
	(Morrenia odorata)		
Alternaria cassia	Sicklepod (Cassia	CASST	Soybean
	obtusifolia)		
Alternaria destruans	Dodders	Smolder	Cranberry
Puccinia candiculata	Yellow nutsedge	Dr. BioSedge	Horticultural
	(Cyperus esculentus)		crops
Puccinia thlaspeos	Dyer's woad (Isatis	Woad Warrior	Rangelands,
	tinctoria)		non-crop
			areas
Chondrostereum pupureum	Black cherry (<i>Prunus</i>	Biochon, Chontrol-	Forest,
	seratina), Red alder	Canada	rangelands
	(Alnus rubra),		
	Populus spp.		
Cylindrobasidium	Acacia spp.	Stumpout-South	Forest,
		Africa	rangelands
Nectria ditissim	Red alder (Alnus	PFC-Alderkill- use in	Forest
	rubra)	Canada	
Phoma macrostoma	Various broadleaf	Bio-Phoma	Pastures,
	weeds		grasslands
Lasiodiplodia,	Parkinsonia,	Di-Bak- use in	Grassland,
Macrophomina,	Jerusalem thorn	Australia	rangeland
Neoscytalidium	(Parkinsonia aculata)		riparian
combination			areas
Sclerotinia minor	Dandelion	Sarritor- Canada	Lawns,
	(Taraxacum		recreational
	officinale)		areas
Fusarium oxysporum f. sp.	Broomrape	"FOO"- Formulation	Sunflower,
orthoceras and F.	(Orobanche cumana	trials,	faba bean,
oxysporum	and O. crenata)	commercialization	tomato
		underway-Egypt	

www.justagriculture.in

Trichoderma koningiopsis	Wild	poinsettia	Field	evaluation-	Row	crops
	(Euphorbia		Brazil		and n	oncrop
	heterophylla)				areas	

Bacterial pathogens as bio-herbicides

Many bacteria have been proved as potential bio-control agent for weeds. Plant pathogenic bacteria, including *Xanthomonas campestris pv poae* (Xcp) and *Pseudomonas syringae pv tagetis* (Pst), were developed as foliar-applied bio-herbicides for the control of annual bluegrass (*Poa annua*) and Asteraceae (composite) weeds, respectively. Two highly effective non-pathogenic isolates, *P. fluorescens* D7 and *P. fluorescens* ACK55 have been commercialized, applied as liquid suspensions or in encapsulated clay for use in cereal crops and rangelands (Table 2).

Bio-control	Target weeds	Formulation/Carrier	Ecosystem
agent/Bacterial			
Pathogens			
Xanthomonas campestris	Annual bluegrass	Camperico- Used in	Turf, lawns
pv. poae	(Poa annua)	Japan	
Pseudomonas syringae p <mark>v</mark> .	Kudzu (Pueraria	Formulated, field	Non
phaseolicola	lobata)	tested	cropland,
			pastures
P. syringae pv. tagetis	Asteraceae weeds	Formulated, field	Maize,
	(composites)	tested	soybean,
			pastures
Ralstonia solanacearum	Tropical soda apple	Formulated, field	Pastures,
	(Solanum viarum)	tested	noncrop
			areas
Pseudomonas fluorescens	Downy brome	Commercialized-	Cereal crops
D7	(Bromus tectorum)	"D7"	
Pseudomonas fluorescens	Downy brome	Commercialized-	Cereal
ACK55	(Bromus tectorum)	"Battalion Pro"	crops,
	Jointed goatgrass		rangelands
	(Aegilops cylindrica),		
	Medusahead		
	(Taeniatherum caput-		
	medusae)		

 Table 2: Different bacterial target weed and ecosystems

www.justagriculture.in

Lactobacillus spp. strains;	Clovers	(Trifolium	Commercialized-	Lawns, turf
Cremoris sp.	spp.),	birdsfoot	"Organo-Sol,"	
	trefoil,	(Lotus	"Kona," "Bioprotec"-	
	corniculati	us)	Canada	

Viruses as bio-herbicides

Viruses can also be employed as bio-herbicides to suppress certain weeds, however due to limitations, they are ineffective as fungal pathogens. Viruses have lots of genetic variability and are not target specific. The tobacco mild green mosaic virus (TMGMV) is a patented bio-herbicide used to control tropical soda apple (*Solanum viarum*), an invasive perennial weed found in pastures and non-cropland areas in the south-eastern and mid-southern United States (table 3).

Bio-cont	rol		1	<mark>Fa</mark> rget	t weeds	Fo	ormulat	ion/Carrier	Ecosystem
agent/Bact	eria	ıl							
Pathoge	ns								
Tobacco mile	1	green	Trop	vical so	da apple	Co	ommerci	alized-	Pastures,
tobamovirus						"S	olviNix	,,	non-crop
									areas

Natural products as bio-herbicides

Many plant-based products can also be used as natural weed control agents. Plants produce secondary metabolites or other photochemicals that hinder seed germination and other growth activities. Plant products can be used as weed control agents in three forms i.e. plant extracts, essential oils, and allelochemicals. These three plant components have been used as potential bio-herbicides for several decades. The major method of action of plant-based products is to impede the germination of weeds and reduce plant development. Plant extracts contain many elements such as peptides, secondary metabolites, alkaloids, terpenoids and tetraterpenoids etc. These compounds, grouped as "biochemical bio-herbicides". Table 4 shows examples of natural compounds with bio-herbicidal action, including those commercialized or in development for practical application.

Table 4: Representative natural products as bio-herbicides

Bio-herbicide	Target weeds	Mode of action/Comments
Corn gluten meal extract	Broad-spectrum PRE control	Complex of phytotoxic
(hydrolysate)	of weeds in turf	dipeptides
Mustard seed meal extract	Green foxtail (Setaria viridis);	Sinalbin (4-hydroxybenzyl
	Powell amaranth (Amaranthus	glucosinolate) active
	powellii)	substance in extract
Rapeseed oil	Broad spectrum weeds; potato	Commercialized as
	vine desiccant	'Beloukha'-Europe
Dried distillers grains	Annual bluegrass (Poa	Methanolic extracts of
extracts (DDGSs)	annua); common chickweed	DDGS
	(St <mark>elar</mark> ia media)	
Saturated fatty acids, i.e.,	Broad-spectrum annual weeds	Geranium (Pelargonium
Pelargonic acid		roseum) leaf extract; many
		preparations marketed
Aglaia odorata leaf extrac <mark>t-</mark>	Inhibited root and shoot	Inhibit growth of weed plant
PORGANIC(TM)	growth of garden cress	
	(Lepidum sativum), lettuce	
	(<i>Lactuca sativa</i>), alfalfa	
	(Medicago sativa), timothy	
	(Phleum pratense), ryegrass	
	(Lolium multiflorum) and	
	Echinochloa crus-galli	
Ammi visnaga (L.) Lam.	lettuce (Lactuca sativa) and	Inhibit seed germination,
Khellin and Visnagin- plant	duckweed (Lemna	photosynthesis, and cellular
extract	paucicostata)	activities.
	velvetleaf (Abutilon	
	theophrasti), crabgrass	
	(Digitaria sanguinalis)	

Vol. 5 Issue- 5, January 2025

Lichen (Cladonia	Lettuce	Change the cellular structure
verticillaris)- Phenolics		of leaves and roots of lettuce
extracts		seedlings
	Essential Oils	
Manuka oil	Crabgrass (Digitaria spp.) and	Distilled from plant parts of
	broad-spectrum of	manuka tree (Leptospermum
	dicotyledonous weeds	scoparium)
Artemisia oil	Coffee senna (Cassia	Volatile oil (1,8 ceneole) of
	occidentalis), Ageratum	wormwood or sage brush
	(Ageratum conyzoides);	(Artemisia scoparia)
	Barnyardgrass	
Savory oil	Redroot pigweed	Carvacrol and terpinene oils;
	(A <mark>mar</mark> anthus retroflexus),	prepared oil/water
	Common lambsquarters	nanoemulsion for application
	(Chenopodium album)	
Monoterpene cineoles	Broad-spectrum	Numerous aromatic herbs,
		i.e., Eucalyptus, Salvia
Eucalypt (Eucalyptus	Amaranth, Purslane and	Amaranth, Purslane and
nicholii), Rosemary	Knapweed	Knapwee germination
(Rosmarinus officinalis L.),		inhibitors species
Lawson cypress		
(Chamaecyparis		
lawsoniana) and White		
cedar (Thuja occidentalis)		
plants		
	Allelochemical-based	
Sorgoleone	Barnyard grass (Echinochloa	Exuded from roots of
	<i>crus-galli</i>), velvetleaf	sorghum (Sorghum bicolor)
	(Abutilon theophrasti), Bent	
	grass (Agrostis stolonifera)	

Rice hull extracts	Barnyard grass	Inhibition of germination,
		seedling growth, and weight
		in barnyard grass
Black walnut (Juglans	Horseweed (Conyza	Inhibit growth of horse weed
nigra) from walnut- Plant	canadensis) and hairy	(Conyza canadensis) and
extract	fleabane (Conyza bonariensis)	hairy fleabane (Conyza
		bonariensis) act as a pre- and
		post-emergent bio-herbicide-
		Commercialized as
		"NaturCur".
Rice var. OM5930 shoot þ	Barnyardgrass, fimbry	Crystalized formulation of
root extracts	(Fimbristylis miliacea), red	aqueous extracts; suppress
	sprangletop (Leptochloa	seedling growth
	chinensis)	
Barley (Hordeum vulgare)	Filamentous algae in aquatic	Extract released during
extract	environments	decomposition in water
Wild tomato (Solanum	Broad-spectrum weeds	Burndown (knockdown) use;
habrochaites) extracts		commercialized as
		"WeedLock" in Malaysia

References

- Kremer, R. J. (2023). Bioherbicide development and commercialization: Challenges and benefits. https://doi.org/10.1016/B978-0-323-95290-3.00016-9.
- Nusrat, Agrawal, A., Kumar, N. and Kumar, J. (2018). Bio-herbicides for sustainable and ecofriendly weed control: a review. *Int. J. Adv. Res.*, 6 (12): 550-661.